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1. INTRODUCTION

This work is a contribution to the solution of the performance prediction problem for
multiping detectors of target echoes. The formalism presented here applies to a typical ac-
tive sonar detection problem. Echoes resulting from pulsed transmit waveforms are input
to a predetection stage (matched filter), followed by a linear detector and a postdetection
integrator. :

Specifically, we wish to characterize the expected detection performance for an en-
counter with a real target, including the dependence of target strength on the observed
target aspect — that is, the dependence of the signal amplitude of the received echo on the
target aspect. We present an approach for the generation of receiver operating character-
istic (ROC) curves for a linear detector operating on signals in Gaussian noise, where the
signal amplitude statistics are determined from empirical target strength data.

The results are a practical extension of some rather old results in detection theory.
Originally, Marcum®? solved the detection problem for the case of a sinusoidal (constant
amplitude) signal in Gaussian noise. Marcum’s results were extended by Swerling,?*
Kaplan,® Schwartz,5 and others to fluctuating signals, where the fluctuations were de-
scribed by analytic densities that made it possible to find approximate closed-form solu-
tions for the multivariate densities of interest. These cases were reduced by Swerling, in
work performed prior to 1966 but only published 30 years later,” to particular cases of
the generalized chi-square distribution. In the same work, he discussed the possibility of
using chi-square density functions to fit cases usually modeled with log-normal density
functions.

These prior studies!~7 were performed in the context of radar physics. The empirical
data that motivated many of these studies consisted of observations of target cross section
~ as a function of aspect angle. In each case the empirical probability density function (pdf)
of the measured data was approximated with an analytic pdf. This analytic pdf was then
used to develop a solution to the performance estimation problem.

The methods developed in this work use target strength measurements from a target
of interest as an empirical estimate of the signal pdf at the linear detector output. This
empirical pdf is then used in the computation of single-ping and multiping detector ROC
curves for the target of interest. The detection statistic is the envelope amplitude (or sum
of envelope amplitudes) at the linear detector output. The random value taken by the
detection statistic depends on the target aspect angle, the transmit pulse duration and
bandwidth, and the statistical characteristics of the additive noise.

The problem is to decide whether a target is present or absent, based on the value
of a univariate random variable, the detection statistic. Denoting the “target present”
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hypothesis by H;, and the “noise only” hypothesis by Hy, the detection statistic 2 is
described by the pdf po(2) if H, is true, and by p,(2), if H; is true. To simplify the
notation, the signal-to-noise ratio (SNR) dependence is omitted. The detection statistic
is compared to a threshold value, b, that divides the range of values for 3 into two regions,
Ro = {2z < b} and R, = {2 > b}. The decision rule is to decide that H, is true if z € Ry, and
H, is true if z € R;.

Detector performance is typically described by the relation between the probability
of detection, Py, and the probability of false alarm, Py, for specified values of the SNR
at the linear detector input. P, represents the probability that the detection statistic is
larger than a threshold value when both signal and noise are present. Py, is the probability
that the detection statistic is larger than the threshold when only noise is present. The
probability of detection is given by

Py= /boopl(z) dz , (1.1)

and the probability of false alarm by

Pjo= -/boopo(z) dz | (1.2)

Together Egs. (1.1) and (1.2) represent the parametric form of the receiver operating
characteristic curve. Implicit and explicit nonparametric forms, F(Psq,P;) =0 and P; =
Py(Pya), can be obtained by eliminating the threshold b between (1.1) and (1.2).

The formalism developed here applies to both single-ping and multiping detection
processes. In the multiping case, the intermediate observation vector, x, is made up
of the linear detector outputs from successive echoes, and represents an observed value
of a multivariate random variable ®. The postdetection integrator sums or averages the
detector outputs from successive echoes to generate a scalar quantity, z, on which the final

decision is based. Thus, the multivariate random variable % is mapped into a univariate
detection statistic 3.

The empirical data used to represent the signal amplitude at the linear detector
output consists of peak target strength measurements from underwater targets of various
sizes and shapes. The target strength measurements quantify the reflectivity of a particu-
lar target as a function of the target aspect angle relative to the transmitter and receiver.
These measurements were performed in a controlled environment essentially free of noise.
The aggregate noise at the detector input (external reverberation, receiver noise, etc.) is
assumed to be zero-mean, Gaussian, and uncorrelated from one echo to the next. Thus,
the noise amplitude has a Rayleigh density at the linear detector output.
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The development in the following sections makes extensive use of the Rayleigh and
Rice (or Rayleigh-Rice) density functions. The Rayleigh pdf is given by

2

z z
p(z,0) = ) eXP(—@) ) (1.3)
and the Rice pdf is
r r? 4 g2 rs
R(?",S,O') = '63 exp(—T‘z-) Io(ga) . (14)

The rest of this report is organized as follows. Section 2 develops the methodology
for computing ROC curves based on empirical target strength data for the single-ping
case. Although all of the results presented in Section 2 can be obtained as particular
forms of the more general multiping results, it is convenient to first work out the simpler
single-ping case. Section 3 then derives the corresponding ROC curve equations for the
multiping case. Section 4 presents selected numerical results obtained with a MATLAB
implementation of the analytical methodology. These results demonstrate the capability
to provide an accurate quantitative description of performance for the class of linear
detectors and for specific targets of interest.
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2. SINGLE-PING ROC CURVE ESTIMATION

2.1 THE GENERAL CASE

The target strength (signal amplitude) is denoted in what follows by s and the
corresponding random variable (RV) by 5. The target aspect angle dependence, the source
of the variations in the signal amplitude, is implicit. The detection problem for a given
aspect angle is equivalent to the detection of a sinusoidal signal of amplitude s and phase 6.
It is assumed here that the associated univariates 3 and § are independent RVs distributed
on [0,00) and [0,2n), respectively. The density functions for 8 and § are respectively fs(r)
and f;(8). The joint pdf for (3,6) is therefore given by

f5(5,0) = fa(s) f4(0) . (2.1)

If we form the new RV
§=(2,9) = 8¢* = (5 cos b, sinf) , (2.2)

the pdfs for (&,9) and (3,6) are related by
1 1
fegp(z,y) = gfgé(b’,e) = 's‘fs‘(s)fé(e) ; (2.3)
where (z,y) = (s cosb, s sin6).

Similarly, the noise is denoted by amplitude » and phase ¢. The corresponding RVs,
# and ¢, are distributed on [0, 0) and [0,2) and are assumed to be independent, with pdfs
fa(n) and f;(4). The joint pdf for (n,¢) is

fag(n, @) = fa(n) f3(9) - (24)
The new RV
f = (,0) = 7 ' (2.5)
will then have the density
Fao(,0) =+ fagln, ) = = faln) £3(0) (26)

It is assumed that 3, 4, #, and ¢ are mutually independent random variables. This
implies that 8§ and f are independent, and, consequently, the pdf of 8 + & is given by the
convolution of the pdfs of § and A,

forn = fs* fa. (2.7)

For the single-ping detection case, the probability of detection and probability of

false alarm, (1.1) and (1.2), are given by
Pu) = [ fiasar(r) ar (2.8)
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and

Pro®)= [ fioie) dr (29)

The values of P; and Py, in (2.8) and (2.9) define a point on the ROC curve for any
common value of the threshold, b, corresponding to a specified SNR value, v, where

2
V= E—z{;—} : (2.10)

The problem is to express fis,4 in terms of the known pdfs f:(s), f5(6), fa(n), and f;(¢).

It is assumed here that the phases 6 and ¢ are uniformly distributed on [0,27) so that

f5(0) = f5(¢) = % . (2.11)

Further, it is assumed that f is normally distributed and that each of its components,
and 9, is zero-mean and has a standard deviation equal to o. This implies that 4 = A is
distributed according to the Rayleigh pdf

fan) = p(n,0) . (2.12)

One may note that since 7 and ¢ are statistically independent, 4 and 4 are uncorrelated
and zero-mean. Given that the RVs 4 and 4 are Gaussian and uncorrelated, it follows that
they are also statistically independent.

The signal-plus-noise density function of (2.7) can be written as a convolution inte-

gral,
fun@n) = [ a' [~ af 46w -ty -v) . (2.13)
Changing the original integration variables to polar coordinates according to (z/,y') =
(r' cos®’,r’ sin¢’) allows the right-hand side of (2.13) to be written in terms of f; and fs.

Similarly, it is convenient to express the independent variables in polar coordinates as
(z,y) = (r cosf,r sin6). With this change of variables (2.13) becomes

fa+a(r cosf,r sinf)

oc 27
= / dr' v’ df’ fz5(r' cos®',r'sin8’) fus(rcosd — 1’ cos®, r sinb — ' sin ). (2.14)
0 0

Using (2.3) and (2.6), (2.14) can be written as

27

fa+a(r cos,r sinf) =/0°o dr’ A df’ fa(r') f4(8")

fa(\/1% + 12 = 2rr"cos(0' = 6)) . ¢, _y,Tsinf—1'siné’
[ V12 412 = 2177 cos(6' — 6) 13 (tan (r cosf — 1/ cos 0’)) - (219)
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Then applying the uniform phase assumption (2.11) to (2.15) leads to

(/7% + 12 — 277’ cos(0' — 0))

2.16
/712 + 12 = 2r1' cos(’ — 6) (2.16)

oo 2w A
fara(r cosf,r sinf) = L dr' fs(r') / de’ fa
4n? Jo 0 .

If the noise amplitude is described by the Rayleigh distribution, the introduction of
(1.3) into (2.16) yields

fapa(r cosf,r sinf) = Y

1 r2 0 r'2 27 rr! cos(8’ =
2e—mg/0 dr f3(r') e 32 %/0 B S el (2.17)
The appearance of the Bessel function
. 1 27 ,
Io(z) = Joliz) = 5- /0 &5eos(6-0) g (2.18)

in (2.17) makes it possible to rewrite this expression in terms of the Rice pdf, defined in
(14), as

fara(r cosf,r sinf) = —1—/ ds fs(s) R(r,s,0) . (2.19)
27TT 0 .
Notice that fs,4 is normalized because f; and R(-,s,c) have unit area.

From (2.19) one can see that the density of §+1 in polar coordinates does not depend
on the phase. This implies that the RVs |5 + #| and arg(§ + f) are independent and that

farg(s+a)(0) = 5. From .
fara(rcosf,rsind) = %ﬁgﬁﬂ (r) (2.20)

and from (2.19), it follows that
Faal(r) = / ds fi(s) R(r,s,0) . (2.21)
0 .

That is, the unconditional density function fis;s is the expected value of a conditional
density function, namely the Rice function R(r,s,s), where R(r,s,0) is dependent on the
constrained signal amplitude, s, with univariate pdf fs(s).

One may note that (2.21) can be expressed in terms of the Hankel transform defined

by
(Hof](r) = /O ds s £(r) Jo(rs) . (2.22)
Taking into account that Ip(z) = Jo(iz), (2.21) can be written as
Fusn(r) = 2 e m w{ LE 210 (2.23)

Using this formulation, the signal-plus-noise density may be computed numerically via
~a 2-D Fourier transform, a frequency domain method for computing the 1-D Hankel
transform.810




The probability of detection is obtained by introducing (2.21) in (2.8) and evaluating
the threshold-dependent integral,

Pa(b) = /0 " ds fi(s) /b " dr R(r,5,0) . (2.24)

Since the noise amplitude is assumed to be Rayleigh distributed, the probability of false
alarm can be expressed with a simple analytic formula. Introducing (1.3) in (2.9), the
probability of false alarm is given by

® s s? b?
Py, (b) =/b ds ;exp(—ﬁ) = exp(—%z-) . (2.25)
Solving (2.25) for b and substituting into (2.24) gives
Py(Pfq,0) =/ ds fi(s) dr R(r,s,o) . (2.26)
0 2021n T,a}:

The ROC curve can be represented graphically as a set of points in the plane with co-

ordinates (z,y) = (Pyq(b), P4(b)) by giving the threshold parameter b a set of convenient
values.

The empirical estimate of the signal probability density function, f;(s), is defined as

E 1
f76) = Y d(s—si), (2.27)
i=1

where {s;}]L, is the set of target strength observations at N equally likely values of the
aspect angle. The empirical estimate for the probability of detection follows by replacing
the probability density function in (2.26) with its empirical estimate (2.27). The empirical
estimate of P; is then obtained as

N
1
Pf(Pfa’o')='N;Pf(Pfa’si’a) ) (2'28)
where -
PR(Ps,, 8,0 =/ dr R(r,s,o) , 2.29
d (Pfa,8,0) - (r,s,0) (2:29)

and where Pya is given by (2.25). Thus, the P, for any given aspect angle can be computed
by numerically integrating (2.29), and the P, over all aspect angles (the expected value of
P, when the aspect angle is unknown) is computed from (2.28).

2.2 SPECIAL CASES

Any special case that has an analytic solution is useful for checking the numerical
implementation of the theoretical results. Two such special cases, the constant amplitude
signal and the Rayleigh-fading signal, are considered below.
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2.2.1 Constant Amplitude Signal

Expression (2.21) takes a simpler form for a constant amplitude sinusoidal signal, in
which case the pdf of the signal amplitude is a Dirac delta function,

fg('l”) = 5(7‘ - 7‘0) . (2.30)
From (2.21) it follows at once that
fl§+ﬁl(7') = R(T, ’r'o,O') ’ (2.31)

which shows the well-known fact that the pdf of the linear detector output for a sinusoidal
signal in Gaussian noise is given by the Rayleigh-Rice function, as defined by (1.4). ROC
curves for this case have been estimated and published by Robertson.!

2.2.2 Rayleigh Distributed Signal

Consider the case where both the signal and noise amplitudes are Rayleigh dis-
tributed at the linear detector output. The signal and noise pdfs are given by

fs(s) = p(s, ) and fa(n) = p(n,0) , (2.32)
where u and ¢ are the Rayleigh parameters.

Now (2.21) can be put in a simple form with the help of the following relationship
[9, eq. 11.4.29, p. 486]: '

b —a2¢? bY _ b2
/O e~ L], (bt) dt = Gy 227 Rv > -1, Ra®>0). (2.33)

Let v=0, a? = %‘E}f;, and b=1:% in (2.33); then one can write (2.21) as

-2
2: ool (2.34)
o2+ u?

fl§+ﬁ| (7’) =

This follows from the fact that the sum of two independent Gaussian RVs is also a Gaussian
RV. |

Substituting (2.34) into (2.8), it follows directly that P; is given by

1 b2

The threshold b can be easily eliminated between (2.25) and (2.35) to obtain the analytic
relation between P;, Py,, and v as
Py=P;, ", (2.36)

where v = p/o.




This page intentionally left blank.

10




3. MULTIPING ROC CURVE ESTIMATION
3.1 THE GENERAL CASE

We now consider a processor that sums M independent samples at the output of the
linear detector. In particular, we consider the multiping processor where the M samples
represent the peak linear detector output from M successive echoes. The signal and noise
components at the linear detector output for the i-th echo are

n; = (g, Niy) = (n; cos(v;), n; sin(v;)), 3.1)

‘and
8i = (Siz, $iy) = (84 cos(¢s), sisin(¢)). (3.2)

Each observation of the multivariate signal RV consists of M scalar observations (31,...,8um)-
The ensemble of these observations form the set {(si,...,smr)}h-;. Introducing the nota-
tion ‘

vi=8;+n;, (3-3)

the detection statistic is given by

M M
2= b= [8+hi (3.4)

M M
2=Zm =Y |hl (3.5)
when only noise is present. The P; and Py, for a given threshold b are then
Py(b) = /b°° Fortoting (r) dr ’ : (3.6)
and

Pralt) = [ Fortsan(r) dr (37)

The SNR of an individual echo (ping i, aspect k) is defined by

2

S
Yik = 2;’“2 ) ' ‘ 3.8)

and the average SNR over all aspects for a given ping index, i, is

1 X
P= > Vik- 3.9
g Nk:l’Yk (3.9)

Here we only consider those detection scenarios where the noise statistics do not change
from ping to ping.

11




As in the 1-D (single-ping) case, it is assumed that the angular parts of s; and n; are
independent of the radial parts, independent of each other, and are uniformly distributed
on [0,2x). This implies that

1 1
fo(@iryi) = s—ifgiqa,. (si, i) = ;i‘fs,- (s)f(:) (3.10)
with s; =[s;| = \/5iz T 55, and ¢; = arctan 3, and
1 1
Fovi (@i i) = n-ifﬁn;,,, (ni, i) = n—ifﬁi(r)f,;(?/}i) ; (3.11)

with n; = /n;; ¥y, and ¢; = arctan . The mutual independence of the radial and angular
components and the uniform distribution of the phase component on [0, 2r), for both the
signal and noise, allow one to write

f§1§2...§l\!(él’é2y e ’éhl) = fél:ﬁ]yﬁzrﬁgu...ﬁAyrﬁAly(sl:t, sl'y, 32:1:, 52y1 o ysl\lilﬂ S]\[y)
M1
= (H S—i)fél.ez...su (s1:82,..80) 5.5, 5, (B1,02,...,¢21)
i=1
M
1\M 1
= (‘2—7[-) (H ;) fél.‘iz..§A,(31,82,...,81\[) N (3.12)
i=1""
and
ffllflz‘..ﬁM(nth,-..,nM) = fﬂl (nl) fﬁ2(n2)'~ .fﬂM(nM)

= farng.an (R,m2, o onar) - f 0 0 (1,92, .., Par)

= nilfm (n1)fy, (1) - ;i—{fﬁu (nan) £y, (¥ar)

M
-1 fa(ns) (3.13)
i=1

27n;

Since the components of n; are assumed to be identically-distributed, independent,
Gaussian RVs, the pdf of n; = |n;| is Rayleigh distributed. The Rayleigh parameter is
equal to the standard deviation of n;, or n,,, that is, o, = On,, = 0;, and

fa, = p(-,04), for all 4. (3.14)
It follows therefore that

M P(ni»ai)
Sarfg. ap (N1, M2,...,np) = 11:[1 _-27rni ’

(3.15)

From the assumptions it follows that the multivariates (s, ...,sy) and (ni,...,np7) are
independent. Consequently, the density function for their sum is given by the convolution
of their multivariate densities,

f§l+ﬁl yyyyy ﬁ}\l'f'ﬁhf = fﬁl,...,él\[ *fﬁl,...,fl,\[ . (316)

12




Using (3.13), (3.14), and the notation v; = s; +n; and v; = |v;| = [s; + n;|, an algebraic
manipulation similar to that used in the 1-D case allows one to express (3.16) as

R(vj, 8;,0)

3.17
pnl, (3.17)

M
f\"!l,...,\“rM(vla'“avM) =/ dMs f§1‘..§M(31,"'1SM) H
RM ;

+ Jj=1

where fERiJ dMs = [ [ dsi...dsy, Ry = [0,00), and where RY is the Mth Cartesian

power of ®,.

If v; is expressed in polar coordinates as v; = (v; cos xi, visinx;), (3.17) can be written

as
Forroiong (Vise ooy V) = for.0a (V1 €OS X1, V18I0 X1, - - -, U €OS XM, U SID X )
1
= Foroons W1y, 00) Fiooginr (X5 -+ - XM)s (8.18)
VL UM
where
M
fﬁl,...,ﬁM(Ula .. -1'UM) = \/;QM dMS f§1u.§M (31, R SM) H R(vj> Sj,O') ) (319)
. + Jj=1
and
1
Fragn (X155 x2) = oM (3.20)

Thus, under the specified assumptions, the radial and angular components of (vi,...,v)
are mutually independent and each angular component is uniformly distributed on [0, 27).

The density of a sum of univariates 2 = 9; + 02 + - -+ + 95 is determined by their joint
density fs,s,...00 (V1,2,-..,vn) according to

fﬁ(Z) = /;EM—I dM—lw f'ﬁlﬁz...ﬁM(wl’w27‘ ey WM—1,2 — W1 —W2 —*** — 'U)M_l) . (3.21)
+

The expression (3.21) is the generalization of the well-known result!® that, given two RVs
& and § with joint pdf fsy(z,y), the pdf of their sum, 2= %+ §, is given by

f3(2) = /_00 fag(z —w,w) dw . (3.22)

Thus (3.21) becomes the M-fold convolution of the 1-D marginal densities of the univariate
RVs when the individual RVs are independent.

If (3.19) is introduced in (3.21) and the order of integration is changed, the M-
dimensional integration in (3.21) will involve only the product of the Rice densities from
(3.19), and will represent the convolution of these Rice functions. Formally, the result is

f:(2) =/§RM dMs for. o (815---,8Mm) G(z,81,...,8M,0) , (3.23)
M :
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where
G(2,81,...,8,0) = [*fi]R(-,si,a)](z) , (3.24)

and where }, represents the M-fold convolution operator. Similarly to (2.21) for the 1-D
case, (3.23) shows that the unconditional pdf, f:(z), is the expected value of a conditional
density function, namely the convolution of Rice functions given by (3.24). The conditional
density function (3.24) is dependent on the constrained signal amplitudes, (sy,...,sss), that
are distributed according to the multivariate pdf f;(s).

The probability of detection follows from (3.6) and (3.23) as

Pa(b) = A @M Sy (51, 50) PR(b 51, 511,0) (3.25)

+

where - .
Pf(b,sl,...,sM,a) =/ dz G(z,81,...,80M,0) . (3.26)
b

The expression (3.25) shows that, for a specified threshold, the probability of detecting a
fluctuating target by summing M echos is the expected value of the constrained probability
of detection of M “point targets” with the corresponding ensemble of “constant” target
strengths distributed according to the multivariate pdf f;, ;,,.

The probability of false alarm can be derived from (3.25) by setting the signal com-
ponents to zero. Thus the signal pdf is given by

M
f.§1...§M(sly-'-7sAI) = H‘s(sz) s (327)
i=1
and this leads to
Pga(b) = Pf(b,s1 =0,...,8 =0,0) = /oo dz [+M,p(-,0))(z) , (3.28)
b

where p(r,0) is the Rayleigh density (1.3). This could have been written directly, since
the noise is assumed to be Rayleigh distributed and independent between echos. Together
(3.25) and (3.28) constitute a parametric expression of the ROC curve.

The empirical estimate for the probability of detection follows from (3.25) if the pdf
for.an(s1,- .., 8m) is replaced by the empirical multivariate pdf

o sn (81,0 80) = %iﬁé(si —8ik) - (3.29)
k=1i=1
The result is
1 N 00 1 N
PE®b) = Nk};:l/b dz G(2,81,...,8M,0) = —N—;Pf(b,slk,...,slm,o) . (3.30)
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3.2 SPECIAL CASES

Formally simpler results can be obtained if the pdf for the sequence of signal am-
plitudes has a manageable analytical form. Such is the situation, for example, when
the signal amplitudes are independent from ping-to-ping (random target aspect), when
the signal amplitudes are identical ping-to-ping (no aspect change), or when the signal
amplitude is constant.

3.2.1 Independent Signal Amplitudes Ping-to-Ping

Given empirical target strength data as a function of aspect, the independent echo
case would correspond to a random change in aspect between echos. While this case is
nonphysical, it is useful in checking the code developed to estimate the multiping ROC
curves. '

If the echos are independent, then the pdf for the ensemble of amplitudes is the
product of the marginal pdfs,

Foroane (81 y8M) = fa,(81) fs,(52) -+ fope(SM) (3.31)

and (3.19) can be written as
M oo
Foryesore (V1500 0M) = H/ ds; fs,(si) R(vi,ss,0) . (3.32)
i=1"0

If this expression for fs,.. s, (v1,...,va) is introduced in (3.21), it follows that the pdf for
the sum of amplitudes is the convolution of M identical replicas of the univariate pdf for
the amplitude of one echo given by (2.21), i.e.,

F2(2) = 4Ly fisra](2) - (3.33)

This expression could have been written immediately, based on the independence of the
signal and noise components.

The empirical estimate of fs(z) follows from (3.46) if fis1a)(2) is replaced by its em-
pirical estimate

N
Eea(e) =3 3 R(s50,0) (3.34)
i=1

obtained from (2.21) and (2.27). The empirical probability of detection can now be esti-
mated numerically by using (3.34), (3.33), and (3.6).

3.2.2 Identical Signal Amplitudes Ping-to-Ping

If the observed target strength (signal amplitude) is constant for any set of M suc-
cessive pings, then the pdf of the M-variate signal is

f§1---§M (81, . ,SM) = fgl(Sl) 6(82 - 81) . (S(SM - 81) . (335)
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If (3.35) is used in (3.19), the result is

0o M
fﬁlf)zu.'ﬁu(vhv2s'",vM) =/ deg(S)HR(Ui,S,O') ) (336)
0 i=1

where R is the Rice function (1.4) and s, is simply denoted by s. If (3.36) is introduced
in (3.21) and the order of integration is changed, the result is

)= [ " ds fu(s) Glzr5,0) | (337)

where G(z,s,0) is the convolution of P identical replicas of the Rayleigh-Rice pdf with
respect to the first dependent variable, i.e.,

G(z,8,0) = [*M,R(-,5,0)](2) . (3.38)

Recalling that z = 6, + 9, + - + 65, the probability of detection follows from (3.6)
with (3.37) and (3.38) as

P,(b) =/bcx> dr /Ooo ds fi(s) G(r,s,0)
—_—/0 ds fé(s)/b dr G(r,s,0)
- /0 ds fs(s)PR(b,s,0) . (3.39)

The expression Pf(b,s,0) = f°dr G(r,s,0) is the single-ping version of (3.26) and has been
tabulated by Robertson.!! This special case corresponds to a random (unknown) aspect
target, but where the aspect remains fixed over any given set of M pings (observations).
Expression (3.39) shows that the probability of detection (P,) for this special case is given
by a weighted average of the P, for M constant amplitude signals where the weighting is
defined by the pdf of the signal amplitudes, f;(s).

The empirical estimate for the probability of detection is obtained by replacing the
pdf of s in (3.39) with its empirical estimate,

N
fE(s) = % D 6(s—si) . (3.40)
k=1

Here {s:}}_, corresponds to the set of target strength values (signal amplitudes) measured
for a uniformly distributed (equally likely) set of aspect angles. The result is

N
Pa(t) = 5 3" PE(b,51,0) (3.41)
k=1
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3.2.3 Constant Amplitude Signals

If the signal amplitude for each ping, 4;, is a constant, A4, then
fglmgM(sl, ey SM) = 5(81 - A) .. -5(8M e A) .

With (3.42), (3.19) becomes

and (3.21) reduces to ‘
fz‘(z) = [*iM=1R('7A’ 0’)](2) .

This could have been obtained from (3.38) by making

f:(s) = d(s — A).

Substituting (3.44) into (3.6), the resulting probability of detection is

PEO) = [ " dz WM, R(, A,0)](2) -

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

The ROC curves derived from (3.46) and the corresponding Py, (3.28) were charted by

Robertson.?
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4. NUMERICAL EXAMPLES

This section provides selected examples of ROC computations to illustrate the ana-
lytical development presented in the preceding sections. Equations (3.25) and (3.28) allow -
straightforward numerical computation of linear detector ROC curves for analytical pdfs
as well as for empirical data.

For the case of a constant target (constant signal amplitude) and independent, Gaus-
sian noise, the P; can be computed by convolving the Rician pdf for the desired SNR with
itself M-1 times, where M is the number of pings to be integrated [see (3.46)]. The cor-
responding P;, is given by (3.28). Example ROC curves for the constant signal case are
shown in Figure 4.1 for SNR = 9 dB and for the integration of 1, 2, and 4 echoes.

The numerical computations for the case of a constant amplitude target were vali-
dated through comparisons with equivalent results published by Robertson!!:}2 for selected
test cases. The P; values, for a given P;, and SNR, computed using the methods devel-
oped here, differed from the corresponding P, values given by Robertson by less than 1%.
Equivalently, the small differences observed in the P; values correspond to a difference of
less than 0.05 dB in the SNR required to achieve a specified P; and Ps,.

ROC curves for a Rayleigh-fluctuating target in Gaussian noise are shown in Figure
4.2. The signal amplitudes are assumed to be independent from ping-to-ping.  Curves
are shown for 1-, 2-, and 4-ping integration and an average SNR of 9 dB. The average
SNR is defined as o?/20¢2, where o is the Rayleigh distribution parameter and o is the
standard deviation of the Gaussian noise. The pdf of the multiping detection statistic in
(3.23) is obtained by computing the normalized sum of Rayleigh-weighted Ricians for the
single-ping case (2.21) and then convolving the resulting pdf with itself the appropriate
number of times.

The numerical computations for the Rayleigh-fluctuating target ROC curves were
validated through comparison with the closed-form solution for the single-ping case, egs.
(2.35) and (2.36), and with the results of a Monte Carlo simulation for the multiping case.
The reduction in performance (lower P; for a given Pj,) for a Rayleigh-fluctuating target
" with average SNR = 9 dB, relative to the performance for a constant target with SNR =
9 dB, is evident from comparison of Figure 4.2 with Figure 4.1.
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Now consider the estimation of detector performance for two actual targets, referred
to here as target A and target B. Figures 4.3 and 4.4 compare the measured target strength
values for the two targets. Figure 4.3 shows the polar scattering patterns (relative target
strength as a function of target aspect angle), while Fig. 4.4 shows the cumulative distri-
bution functions (cdfs) of the target strength values over all aspect angles. As seen from
Fig. 4.3, the target strength of target A is larger than that of target B for most aspect
angles. In Fig. 4.4, the cdf for target B has been shifted by approximately +7 dB relative
to the cdf for target A in ordér to make the average SNR values equal for the two targets.
The target strength characteristics for these two targets are clearly very different.

Figure 4.5 illustrates how the expected detection performance over all aspects, i.e.,
the expected detection performance for a random aspect encounter with the target, de-
pends on the target strength characteristics of these two targets. ROC curves, computed
using (3.28) and (3.30), are shown for both single-ping detection and for the integration of
four pings. The target strength values and noise statistics were scaled so that the average
SNR was 9 dB for both targets, where the average SNR is defined by Eq. (3.9). Thus,
the differences between the ROC curves for targets A and B result from the differences in
the shapes of the target strength cdfs (Fig. 4.4) rather than from absolute differences in
the target strength values (Fig. 4.3) for these two targets.

In many applications, detection performance against a particular target is computed
based on a point target representation; i.e., a single target strength value is used to
represent the (statistical) encounter with the target. A common approach is to use an order
statistic, from the target strength versus aspect values, that corresponds to the desired
probability of detection. For example, if a 90% probability of detection is desired, the
lower 10th percentile target strength value is used to represent the target. The objective
of this procedure is to force a conservative estimate of performance prediction relative to
the actual performance. ‘

Figure 4.6 compares the ROC curve for target B, computed using the methods of
this paper that incorporate the target strength measurements for all aspects, with ROC
curves for a point target (constant signal amplitude) assumption. The blue curve shows
the estimated ROC curve for target B for 4-ping integration and an average SNR of 10.8
dB. The red curves are the corresponding 4-ping ROC curves for the constant (pbint)
target assumption at SNRs equivalent to the 10th (lower curve) and 50th (upper curve)
percentile values of the target strength distribution for target B. The lower 10th percentile
corresponds to an SNR of 2.5 dB while the 50th percentile SNR is 7.0 dB. Clearly, the
ROC curves for the point target assumption provide a poor representation of the expected
detection performance for this target.
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Figure 4.7 shows a set of ROC curves for target B for the case of 2-ping integration
for average SNRs of 6, 9, 12, 15, and 18 dB. Figure 4.8 shows a similar set of ROC curves
for target B with an average SNR of 9 dB where the number of pings integrated varies
from 1 to 16 pings. While these curves assume a random target aspect for the encounter
(all aspects are equally likely), it is straightforward to include any a priori knowledge
about the target aspect or range of target aspects in the ROC curve computations.

The ROC curves in the previous figures show the expected multiping detection per-
formance when all target aspects are equally likely and when the aspect is constant over
any given set of multiping observations. The effect of ping-to-ping changes in aspect on
detection performance is illustrated in Fig. 4.9. ROC curves are shown for target B for
an average SNR of 9 dB with 8 pings integrated for a fixed aspect (no aspect change), a
shift in the observed aspect of 0.4 degrees per ping, and a shift of 2.0 degrees per ping.
In addition, the ROC curve is shown for the case of a random aspect shift from ping to
ping. As in the previous figures, the ROC curves represent the expected performance for
a random aspect encounter with the target. The independent aspect case represents an
approximate upper bound on performance for ping-to-ping aspect changes typical of a
real-world encounter.
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Figure 4.7 Target B ROC curves versus SNR.
2-ping integration; Avg. SNR = 6, 9, 12, 15, 18 dB

24




o
[2)

o
[3)

Probability of Detection
o
Y

o
w

e
()

0.1

10° 10™ 10°
Probability of False Alarm

Figure 4.8 Target B ROC curves versus number of pings.
Avg. SNR = 9 dB; 1-, 2-, 4-, 8-, 16-ping integration

10 107°

0.9

5 0.8

B

2

®

a

G507

2

3
.g . :[ = Random Aspect |:::
o6 | = = 2.0 deg ShiftPing |-

©i| =+ 0.4 deg Shift/Ping |::
i L= No Shift _

0.5

0.4

107 107 107°

107° 107 107°
Probability of False Alarm

Figure 4.9 Target B ROC curves — effects of ping-to-ping aspect shift.
Avg. SNR = 9 dB; 8-ping integration

25




This page intentionally left blank.

26




5. SUMMARY

This work presents a method for incorporating target scattering patterns directly
into the computation of statistical detection performance for a linear detector followed
by a post-detector integrator that sums the detected peaks over multiple echoes. Tar-
get scattering patterns (e.g., acoustic target strength or radar cross-section) characterize
the echo-to-echo fluctuations in level due to changes in observed target aspect. In this
work, the scattering patterns of interest are obtained from direct measurement of acoustic
target strength of underwater bottom mines; however, scattering patterns obtained from
theoretical models or other means can be used as well.

As illustrated by the examples in the previous section, the methodology presented
here supports estimation of multi-ping Receiver Operating Characteristic (ROC) curve
performance for any simulation scenario of interest. For example, detection performance
can be estimated for a random encounter with a specific target (i.e., initial aspect un-
known), for a specific sonar-target encounter geometry as a function of the initial observed
target aspect, or as a function of the range of target aspects observed in a sonar-target
encounter. Alternatively, the method can be used when the received signal amplitudes are
described by an analytic distribution. The methodology can be extended to the general
detector-averager problem for sampled time-varying echo envelopes given that successive
samples of the received signal-plus-noise are independent.
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